Exploiting problem structure in a genetic algorithm approach to a nurse
نویسندگان
چکیده
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using cooperating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
منابع مشابه
Genetic Algorithm-Based Optimization Approach for an Uncapacitated Single Allocation P-hub Center Problem with more realistic cost structure
A p-hub center network design problem is definition of some nodes as hubs and allocation of non-hub nodes to them wherein the maximum travel times between any pair of nodes is minimized. The distinctive feature of this study is proposing a new mathematical formulation for modeling costs in a p-hub center problem. Here, instead of considering costs as a linear function of distance, for the first...
متن کاملSolving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملA New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملMaximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm
The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital’s demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses’ preferences for working shifts and weekends off by considering several important...
متن کاملA genetic algorithm approach for a dynamic cell formation problem considering machine breakdown and buffer storage
Cell formation problem mainly address how machines should be grouped and parts be processed in cells. In dynamic environments, product mix and demand change in each period of the planning horizon. Incorporating such assumption in the model increases flexibility of the system to meet customer’s requirements. In this model, to ensure the reliability of the system in presence of unreliable machine...
متن کاملA genetic algorithm approach for problem
In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling problem with family setup time that minimizes the total weighted flow time ( ). No set-up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching from the processing of family i jobs to those of another family j, i  j, the duration of this set-up being the sequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005